### Net Zero Energy in Very Cold Climates





Habitat Studio has built over thirty five houses with Energuide Ratings of 86 or better (~HERS 20)

Our minimum energy specification results in a Energuide rating of 82





Building your vision

# Net Zero Energy

- Produces all of its own energy for Heating, DHW, Lighting and Appliances on site over the course of a year.
- Next to impossible without aggressive conservation and good solar orientation.



#### Edmonton Habitat Studio NetZero Energy Houses so far

- 9360°F (5200°C) HDD
- -31° F Design Temp
  Anchorage
- 10570° F (5870° C)
- -20<sup>0</sup> F Design Temp

#### Fairbanks

- 13940° F (7750° C)
- -49<sup>0</sup> F Design Temp



Belgravia NetZero



Parkland NetZero







South Windsor Park

NetZero



Holyrood Near

NetZero Retrofit



Building your vision

# Outline

- I. Net zero energy building performance depends on an on site photovoltaic (PV) system to make up what energy is required after conservation and other renewables
- 2. Optimal solutions require shrinking the PV system so that:
  - I. You can afford it
  - 2. It will fit on your roof
- 3. Carefully designed conservation + an Air Source Heat Pump can shrink the required PV system to a manageable size.

# Cold Climate Net Zero Energy Challenges

- Long , dark, cold winter
- Yield from renewables is low and some are not available when most needed
- Net Zero is barely possible north of 60. You need to get everything right.
- Build in a cushion. Nothing ever works better than you think it will.

# Building a Better Building Envelope

- Conservation is the simplest, most economical and most reliable route to energy/ carbon reduction better than solar PV, solar Hot Water, better than geothermal
- Without aggressive conservation there's not much point in planning for renewable energy collection
- The most benign energy available is the energy don't ever need.
- Very hard to fix later



### **Integrated Design Process**



**Bunting Coady Architects, Vancouver** 

# Designing for Net Zero

- Site assessment
- Preliminary design

#### **Energy Reduction**

- Model Energy Performance of preliminary design
- Reduce base loads
  - Domestic hot water
  - Lighting and appliances
- Use the modelling results to optimize the Building Envelope and Passive solar gain

#### Renewable Energy Collection

- Examine / Model solar domestic hot water and heating
- Consider Air Source Heat Pumps or Geothermal
- Size PV to meet remaining total load

• Finish detailed architectural and system design

## Regional Assessment



- Heating season degree days
- Local design temperature
- Operating range for air source heat pump
- Feasibility of Geothermal
- Regional Solar PV Potential



## Site Assessment



- Normal site assessment
- Evaluate the Solar Potential
- Consider potential shading from buildings, trees, etc.
- Potential for renewable energy harvesting



# Preliminary Design

- Normal architectural considerations- Job #1 is to build a great place to live.
- Keep living spaces on the south side to make best use of Passive Solar potential
- Try to accommodate space for Solar DHW
- Try to accommodate space for Photovoltaic generation
- Keep the shape simple and compact



# House Shape Considerations

- Smaller buildings use less total energy and are cheaper to build
- Bigger houses can use less energy per square foot of useful floor area
- Simpler shapes have less surface area per square foot of useful floor area
- Buildings with big cathedral ceilings have more surface area
- Making small simple buildings look great can be a challenge

Providing room for renewable energy collection: As PV gets cheaper, finding roof space will become the limiting factor



Windsor Park NetZero



Riverdale NetZero



#### Mill Creek NetZero



Belgravia NetZero





Parkland NetZero



NRCan NZ Pilot

### Roof shape



- When PV costs were \$5 to \$7.00 per installed peak watt we angled the roof to max out production per module
- With PV now costing \$3 to \$3.50 per installed peak watt we are trying get as many modules as possible and accepting lower output per module

### Cost Optimization of Conservation Measures

Cost per kilowatt-hour/year (kWh/a) of any energy conservation measure

Cost of the measure / energy saving in kilowatt-hours per year(kWh/a)

### For Net Zero Energy at the Lowest Cost

Cost per kWh/year of energy conservation



Cost per kWh/year of energy collection\*

\*Current cost of PV in Edmonton is \$3.00 to \$3.50 for the capacity to generate I kWh/year

\* \$4.00 for the capacity to generate

I kWh/year in south central Alaska?

# Modelling

- Good modelling is everything. Designing for net zero at an optimum cost. is impossible without it. You would be shooting in the dark
- Model early in the design process while it is still easy to make changes and before people get attached to particular configurations
- Model in house if possible, but if you can't you can still learn by playing with the input values in a model set up an expert evaluator.
- It gets easier the second, third, and subsequent times.



# Modelling Tools

- Passive House Planning Package (PHPP) is excellent. It gives by far the best feedback and the most control over critical details
- HOT2000 is tested, tried, and true. It is the basis for most Canadian labelling and rebate programs
- AKWarm probably not good enough for optimizing NZ





Belgravia NetZero

#### Passive House/ PHPP Modelling Advantages over HOT2000

- PHPP's more detailed, finer grained analysis gives designers more control over important details
- PHPP is more transparent
- Allows designers to test and modulate thermal bridging
- Realistic input and design control over solar shading
  - HOT2000 assumes 100% of possible solar radiation reaches the building.
  - This disconnect from reality can lead to significant over estimation of useful solar gains.



### HOT2000 Modelling Advantages

- Input is very quick model takes one to two hours when built on an existing file
- Tested and verified in Canadian climates\*
- More realistic treatment of internal gains
- Ground heat loss computation uses finite element analysis rather than approximations.
- Great comparative reports





Basement





Main





Second

- Kennepohl Franchuk Residence
- House area is ~ 2250 sq. ft plus finished basement
- ~900 sqft of roof area
- TFA is 2626 sq.ft (245m<sup>2)</sup>

North

South

#### NRCan R2000 NZ Pilot



Site Plan

Monthly solar access

# Energy Units

Because we talking about all of the energy needed to run the house for a year it is easier to stick to kilowatt-hours

- I Kilowatt hour = 3413 BTUs
- I Btu = .00029 Kwh

Watts of peak load per heating degree as a metric for comparing envelopes in different climates

### Anchorage

- R56 walls
- R85 Attic
- RI6 Slab
- R 50 foundation wall
- .6 ACH 50
- Tri glazed fibreglass R9 COG, SHGC.5 Windows

#### Fairbanks

- R70 walls
- RI00 Attic
- R20 Slab
- R 60 foundation wall
- .6 ACH 50
- Tri glazed fibreglass R9 COG, SHGC.5 Windows

8720 watts @ -31°F = 88 watts/°F 9541 watts @ -49°F = 81 watts/°F

Also a useful comparison when considering air source heat pumps

# Designing for Net Zero

- Site assessment
- Preliminary design

**Energy Reduction** 

- Model Energy Performance of preliminary design
- Reduce base loads
  - Domestic hot water
  - Lighting and appliances
- Use the modelling results to optimize the Building Envelope and Passive solar gain

Renewable Energy Collection

- Examine / Model solar domestic hot water and heating
- Consider Air Source Heat Pump or Geothermal
- Size PV to meet remaining total load

• Finish detailed architectural and system design

### Base Load Reduction\*





\*Nailing down the base loads will a have a big impact on heating energy and payback calcs for various envelope improvement strategies

\*\* Assuming straight electric with no COP and after accounting for passive solar and internal gains

# Building envelope checklist

- Lowest cost per <u>effective</u> R value
- Ease of getting ultra air tightness.
- Continuous insulation layer- no thermal thermal bridges
- Durability- vapour openness.
- Ease of construction
  - not too disruptive of normal construction sequence
  - minimal work from scaffolding

# Options for walls with better performance than2x6 16'' O.C.

- 2x6 with high density foam
- SIPs (Structurally Insulated Panels
- 2x6 with 2x3 Strapping
- 12 or 16'' Double 2x4
- REMOTE walls see CCHRC site for some great pamphlets





#### • Double-stud 2x4

Walls

Follows normal construction sequence

3/8''OSB

- I 6'' results in a true R-56 value. (12'' R40-41)
- Same amount of lumber as a typical 2x6 16''OC wall
- Good airtightness with some care and attention
- Cellufibre insulation
- Most economical High R- value wall there is





Assembly





Building your vision

# Pre-insulation Sealing

- Seal around wires and pipes where they go through the air barrier
- Provide backing for more durable seas around air barrier penetrations













- Air tightness is by far the best investment you can make
- Air test results of 0.6ACH 50 are achievable and also enhance long term durability.
- New hygrothermically safe air sealing products and techniques are one of the biggest benefits of the Passive House approach.





© Passive House Institute US 2013 – Certified Passive House Consultant Training

### Thermal Bridging Control

- HOT2000 is responsive to thermal bridging control is a few areas, but isn't transparent.
- Effective R values depend on continuous insulation layers.
- Passive House Planning Package (PHPP) requires detailed input and gives good feedback.
- Eliminating thermal bridging will reduce heat loss substantially whether you can calculate it or not.







Windows

- Windows and doors are the single biggest source of transmission heat loss - often 40% or more.
- It is difficult to justify the high cost of European Windows

| 227   | Exterior    |
|-------|-------------|
|       | - investory |
|       | Junio Annue |
|       |             |
|       | 125         |
| 10000 |             |
| 2111. |             |



#### Moisture Control- Hygrothermic Safety

- Vapour drive from inside to out is directly proportional to temperature difference between inside and out. Solutions from more temperate climates will not necessarily work in very cold climates.
- As walls get thicker and tighter it gets harder for them to dry out.



#### Good source of info

- CCHRC report on Moisture in REMOTE walls
- Building Science Corporation <u>http://www.buildingscience.com/</u> <u>documents/bareports/ba-1316-moisture-management-for-high-r-value-</u> <u>walls/view</u>
- Air tightness of older-generation energy efficient houses in Saskatoon in Journal of Building Physics Volume 36 Issue 3, January 2013 (email <u>pamerongen@habitat-studio.com</u> for a .pdf)

## Air Pohoda ERV Ultima 240E

Sliding gates on both sides of core alternate air flow through\_ heat exchanger channels

- 90 to 95% efficient recovery
- Self defrosting without preheat or indoor air recirculation
- Decent electrical consumption (.65 watts/ cfm at 118 cfm)
- Easily homeowner control of humidity levels
- High quality components, durable construction



### Notes regarding the cost optimization that follows

- The following data are snapshots only. Points along a continuum for a particular house , a particular site and particular climate (Edmonton).
- The costs that follow are conservative on low side and based on Habitat Studio experience. They do not include builder markup.
- 2 scenarios / snap shots in Edmonton.
  - incremental costs of going from EGH 88 (102w/<sup>0</sup>F)/(38.6 kWh/m<sup>2</sup>/a) to EGH92(85w/<sup>0</sup>F)/(27.0 kWh/m<sup>2</sup>/a)
  - incremental costs to go from EGH92(85w/<sup>0</sup>F)/ (27 kWh/m<sup>2</sup>/a) to full Passive House compliance (76w/<sup>0</sup>F)/(14.6 kWh/m<sup>2</sup>/a)
- For context, the typical cost for the capacity to generate 1 Kilowatt hour per year from PV in south central Alaska would be \$3.25 per installed peak watt / .825 annual kWh per installed peak watt = ~\$4.00

|                                         | EGH 88(102w/°F)                           | EGH 92 (85w/°F)                                         |                                            |                                |                                              |
|-----------------------------------------|-------------------------------------------|---------------------------------------------------------|--------------------------------------------|--------------------------------|----------------------------------------------|
| Costs to<br>upgrade from<br>EGH88 to NZ | Initial spec                              | Upgrade                                                 | Total<br>incremental<br>cost of<br>Upgrade | Net energy<br>saved<br>(kWh/y) | Cost per unit<br>energy saved<br>(\$/ kWh/y) |
|                                         |                                           |                                                         |                                            |                                |                                              |
| Slab                                    | 4" Type 2 EPS                             | 6" Type 2 EPS                                           | \$1,199.10                                 | 724                            | \$1.66                                       |
|                                         |                                           |                                                         |                                            |                                |                                              |
| Foundation<br>Walls                     | 4" Type 2 EPS with<br>6" frost wall( R37) | 2" Type 2 EPS+2"<br>Polyiso with 8" frost<br>wall( R49) | \$681.85                                   | 363                            | \$1.88                                       |
|                                         |                                           |                                                         |                                            |                                |                                              |
| Walls                                   | 12' Double 2x4 R40                        | 16"Double 2x4 R56                                       | \$7,090.76                                 | 1023                           | \$6.93                                       |
|                                         |                                           |                                                         |                                            |                                |                                              |
| Ceiling                                 | 23" cellulose R79                         | 27" cellulose R86                                       | \$581                                      | 360                            | \$1.61                                       |
|                                         |                                           |                                                         |                                            |                                |                                              |
| Air Tightness                           | .6 ACH                                    | .5 ACH                                                  | \$650                                      | 306                            | \$2.12                                       |
|                                         |                                           |                                                         |                                            |                                |                                              |
| Windows                                 | FG Frame R5.7/R8.3                        | Same as EGH 88                                          | \$0                                        | 0                              | -                                            |
| Window Ψ<br>Install(BTU/<br>br.ft.°F)   | 0.06                                      | 0.023                                                   | \$2,300                                    | 778                            | \$2.96                                       |
|                                         | 0.00                                      | 0.025                                                   | φ2,500                                     | 770                            | φ2.90                                        |
| HRV                                     | Ultimate AirDX200                         | Ultimate AirDX200                                       | \$0                                        | 0                              | -                                            |
| HRV Ground loop<br>preheat              | None                                      | Ground loop preheat                                     | \$2,600                                    | 500                            | \$5.20                                       |
| Total Upgrade<br>Cost/Benefit           |                                           |                                                         | \$15,102.71                                | 3748                           | \$4.03                                       |

|                                       | EGH92 (85w/°F)                                          | PH (76w/°F)                                   |                                            |                                |                                              |
|---------------------------------------|---------------------------------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------|----------------------------------------------|
| Costs to upgrade<br>from NZ to PH     | NZ Spec                                                 | Upgrade                                       | Total<br>incremental<br>cost of<br>Upgrade | Net energy<br>saved<br>(kWh/y) | Cost per unit<br>energy saved<br>(\$/ kWh/y) |
|                                       |                                                         |                                               |                                            |                                |                                              |
| Slab                                  | 6" Type 2 EPS                                           | 8" Type 2 EPS                                 | \$1,199.10                                 | 396                            | \$3.03                                       |
| Foundation Walls                      | 2" Type 2 EPS+2"<br>Polyiso with 8" frost<br>wall( R49) | 2" Type 2 EPS,<br>4" Polyiso with<br>8" frost | \$1,153.90                                 | 169                            | \$6.85                                       |
| Walls                                 | 16"Double 2x4 R56                                       | 16"Double 2x4<br>with 2x4 wire<br>chase R67   | \$9,560.82                                 | 585                            | \$16.34                                      |
| Ceiling                               | 27" cellulose R86                                       | 30" cellulose<br>R100                         | \$813.40                                   | 89                             | \$9.16                                       |
| Air Tightness                         | .5 ACH                                                  | .3 ACH                                        | \$1,250.00                                 | 613                            | \$2.04                                       |
| Windows                               | Same as EGH 88                                          | Internorm<br>Windows                          | \$16,826.00                                | 2643                           | \$6.37                                       |
| Window Ψ<br>Install(BTU/hr.ft.<br>°F) | 0.02                                                    | 0.02                                          | \$0.00                                     | 0                              | -                                            |
| HRV                                   | Ultimate AirDX200                                       | Zehnder Novus<br>300                          | \$3,000.00                                 | <u>540</u>                     | \$5.56                                       |
| HRV Ground loop<br>preheat            | Ground loop preheat                                     | Ground loop<br>preheat                        | \$0.00                                     | 0                              | -                                            |
| Total Upgrade<br>Cost/Benefit         |                                                         |                                               | \$33,803.22                                | 4422                           | \$7.64                                       |

### Comparing PHPP results with HOT2000 EGH88 (102w/<sup>o</sup>F)(38.6 kWh/m<sup>2</sup>/a) to EGH92 (85w/<sup>o</sup>F) (27.0 kWh/m<sup>2</sup>/a)

|                                          | EGH 88<br>(102w/°F)                 | EGH92<br>(85w/°F)                  | PHPP<br>kWH/Y<br>Saved | H2K<br>kWH/Y<br>Saved | Cost of<br>Upgrade | PHPP Saving<br>cost/kWh/y | H2K cost per<br>kWH/Y Saved |
|------------------------------------------|-------------------------------------|------------------------------------|------------------------|-----------------------|--------------------|---------------------------|-----------------------------|
| Slab and<br>foundation<br>below<br>grade | 4" Type 2<br>EPS/ R39<br>Frost Wall | 6" Type 2<br>EPS/R49<br>Frost Wall | 1087                   | 485                   | \$1,881            | \$1.77                    | \$3.88                      |
| Walls                                    | 12' Double<br>2x4 R40               | 16"Double<br>2x4 R56               | 1023                   | 1085                  | \$7,091            | \$6.93                    | \$6.54                      |
| Ceiling                                  | 23" cellulose<br>R79                | 27"<br>cellulose<br>R86            | 360                    | 99                    | \$581              | \$1.61                    | \$5.89                      |
| Air<br>Tightness                         | .6 ACH                              | .5 ACH                             | 306                    | 218                   | \$650              | \$2.12                    | \$2.98                      |
| НАВ                                      | ΙΤΑΤ                                |                                    |                        |                       |                    |                           |                             |

Building your vision

studio

### Comparing PHPP results with HOT2000 EGH92 (85w/°F) (27.0 kWh/m²/a) to PH (76w/°F) (14.6 kWh/m²/a)

|                                          | EGH92<br>(85w/°F)                                                                     | PH (76w/⁰F)                                                                      | PHPP<br>kWH/Y<br>Saved | H2K<br>kWH/Y<br>Saved | Cost of<br>Upgrade | PHPP Saving<br>cost/kWh/y | H2K cost<br>per kWH/Y<br>Saved |
|------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------|-----------------------|--------------------|---------------------------|--------------------------------|
| Slab and<br>foundation<br>below<br>grade | 6" Type 2<br>EPS Slab. 2"<br>Type 2 EPS<br>+2" Polyiso<br>with 8" frost<br>wall( R49) | 8"type 2EPS<br>Slab. 2" Type 2<br>EPS, 4" Polyiso<br>with 8" frost<br>wall( R64) | 565                    | 347                   | \$2,353            | \$4.16                    | \$6.78                         |
| Walls                                    | 16"Double<br>2x4 R56                                                                  | 16"Double 2x4<br>with 2x4 wire<br>chase R67                                      | 585                    | 446                   | \$9,561            | \$16.34                   | \$21.44                        |
| Ceiling                                  | 27" cellulose<br>R86                                                                  | 30" cellulose<br>R100                                                            | 89                     | 59                    | \$813              | \$9.16                    | \$13.81                        |
| Air<br>Tightness                         | .5 ACH                                                                                | .3 ACH                                                                           | 306                    | 431                   | \$1,250            | \$2.90                    | \$2.04                         |



# Designing for Net Zero

- Site assessment
- Preliminary design

#### **Energy Reduction**

- Model Energy Performance of preliminary design
- Reduce base loads
  - Domestic hot water
  - Lighting and appliances
- Use the modelling results to optimize the Building Envelope and Passive solar gain

#### Renewable Energy Collection

- Examine / Model solar domestic hot water and heating
- Consider Air Source Heat Pump or Geothermal
- Size PV to meet remaining total load

• Finish detailed architectural and system design

# Optimize Passive Solar

- Cheapest, simplest, renewable energy strategy.
- Maximize solar gain
- Check for Shading from nearby obstacles
- Check Model for Overheating
- Adjust overhangs
- Add thermal mass if warranted

### Overhangs/ Shading



### June 21 January 17 Cranbrook Sun Angles

### Optimizing South Glazing Area (From the HOT2000 House Comparison Report)

| <b>Optimizing South Glazing Area</b><br>(From the HOT2000 House Comparison Report) | nus & South . | inus 2 South L | un Windows<br>s 2 South Mri. | <sup>Y</sup> iginal Belgravia dec. | US/SU |
|------------------------------------------------------------------------------------|---------------|----------------|------------------------------|------------------------------------|-------|
| ANNUAL SPACE HEATING SUMMARY                                                       | 5             | Ľ              | Nd.                          | Õ                                  |       |
| Design Heat Loss (Watts)                                                           | 6394          | 6693           | 7462                         | 7080                               |       |
| Gross Space Heat Loss (MJ)                                                         | 35380.1       | 38218.1        | 45491.0                      | 41872.5                            |       |
| Sensible Occupancy Heat Gain (kWh/day)                                             | 1.60          | 1.60           | 1.60                         | 1.60                               |       |
| Usable Internal Gains (MJ)                                                         | 9506.3        | 9772.9         | 10401.7                      | 10113.9                            |       |
| Usable Internal Gains Fraction (%)                                                 | 26.9          | 25.6           | 22.9                         | 24.2                               |       |
| Usable Solar Gains (MJ)                                                            | 15528.5       | 19085.3        | 26231.1                      | 22818.3                            |       |
| Usable Solar Gains Fraction (%)                                                    | 43.9          | 49.9           | 57.7                         | 54.5                               |       |
| Vent. Electrical Contribution (MJ)                                                 | 5916.0        | 5916.0         | 5916.0                       | 5916.0                             |       |
| Auxiliary Energy Required (MJ)                                                     | 8791.6        | 7765.9         | 7264.4                       | 7346.4                             |       |
| SPACE + DHW ENERGY (MJ)                                                            | 21687.1       | 20661.5        | 20159.9                      | 20241.9                            |       |
| R-2000 SPACE + DHW TARGET (MJ)                                                     | 59188.9       | 59188.9        | 59188.9                      | 59188.9                            |       |
| ANNUAL FUEL CONSUMPTION SUMMARY                                                    |               |                |                              |                                    |       |
| Electricity (kWh)                                                                  | 10157.3       | 9963.7         | 10049.2                      | 9959.3                             |       |

## Higher Performance Windows & High Thermal Mass



Upper Line Light, wood frame, construction

Triple paned, low-e, argon filled, windows

#### Lower Line

Change construction to very high thermal mass and install new windows



### Mill Creek Passive Solar





- Maximum south window area 11.5% of floor area
- 64 mm concrete floor overlay provides effect thermal mass.
- Adjustable PV awning provides summer shading
- Over 50% of total annual space heat needs

# Mill Creek NetZero Moveable PV Awning



#### September 10



#### October 17



![](_page_49_Picture_6.jpeg)

#### Useable Monthly Solar Gains (Megajoules(3.6 mj= 1kWh))

HOT2000 assumes that 100% of the theoretical annual solar gain is coming through your window and heating your house

#### Anchorage

| MONTHLY | ENERGY PROFILE      |                        | $\bigcap$           |                     |               |
|---------|---------------------|------------------------|---------------------|---------------------|---------------|
| Month   | Energy Load<br>(MJ) | Internal Gains<br>(MJ) | Solar Gains<br>(MJ) | Aux. Energy<br>(MJ) | HRV Eff.<br>% |
| Jan     | 8128.1              | 1792.1                 | 1346.9              | 4989.1              | 90.4          |
| Feb     | 6522.3              | 1613.0                 | 3168.8              | 1740.5              | 90.6          |
| Mar     | 6364.0              | 1783.8                 | 2086.6              | 2493.6              | 90.7          |
| Apr     | 4529.5              | 1728.2                 | 2263.3              | 537.9               | 90.7          |
| Мау     | 3243.3              | 1770.0                 | 1471.4              | 1.9                 | 0.0           |
| Jun     | 1634.5              | 1254.6                 | 379.8               | 0.0                 | 0.0           |
| Jul     | 1301.1              | 1108.5                 | 192.6               | 0.0                 | 0.0           |
| Aug     | 1478.7              | 1203.2                 | 275.4               | 0.0                 | 0.0           |
| Sep     | 2317.3              | 1436.2                 | 881.1               | 0.0                 | 0.0           |
| Oct     | 4717.3              | 1814.2                 | 1200.0              | 1703.1              | 90.7          |
| Nov     | 6492.6              | 1750.0                 | 793.5               | 3949.2              | 90.6          |
| Dec     | 7932.5              | 1800.2                 | 1519.6              | 4612.7              | 90.4          |
| Ann     | 54661.3             | 19054.2                | 15579.1             | 20028.0             | 90.6          |
| )one    |                     |                        |                     |                     | General       |

#### Second Guessing HOT2000 Solar Gains for Belgravia Net Zero

![](_page_51_Figure_1.jpeg)

Solmatic Suneye Reading for Belgravia

![](_page_51_Figure_3.jpeg)

Solmatic Suneye Reading for Rvierdale

| Adjustments to<br>HOT2000 Solar Gain<br>Predictions            |                                  |          |                      |                                    |     |  |
|----------------------------------------------------------------|----------------------------------|----------|----------------------|------------------------------------|-----|--|
| Monthly Solar Gains                                            | H2K Solar gain predictions (KWH) | Suneye % | Adjustme<br>nt (kWh) | Adjustment<br>for dirty<br>windows |     |  |
| Jan                                                            | 1224                             | 91%      | 110                  | 5.00%                              | 56  |  |
| Feb                                                            | 1251                             | 97%      | 38                   | 5.00%                              | 61  |  |
| March                                                          | 1234                             | 98%      | 25                   | 5.00%                              | 60  |  |
| April                                                          | 704                              | 100%     |                      | 5.00%                              |     |  |
| Мау                                                            | 0                                | 100%     |                      | 5.00%                              |     |  |
| June                                                           | 0                                | 100%     |                      | 5.00%                              |     |  |
| July                                                           | 0                                | 100%     |                      | 5.00%                              |     |  |
| August                                                         | 0                                | 100%     |                      | 5.00%                              |     |  |
| September                                                      | 377                              | 100%     |                      | 5.00%                              |     |  |
| October                                                        | 710                              | 97%      | 21                   | 5.00%                              | 34  |  |
| November                                                       | 1067                             | 94%      | 64                   | 5.00%                              | 50  |  |
| January                                                        | 1075                             | 94%      | 65                   | 5.00%                              | 51  |  |
| Deduct From<br>HOT2000 useable<br>solar gains                  | 7642                             |          | 322                  |                                    | 312 |  |
| Adjusted EnergyUseable Solar GainPredictions7,008              |                                  |          |                      |                                    |     |  |
| HO12000 assumes that 100% of the theoretically available solar |                                  |          |                      |                                    |     |  |
| radiation will hit your window                                 |                                  |          |                      |                                    |     |  |

Monthly Heating Energy Required (Megajoules(3.6 mj= 1kWh))

Anchorage

#### Net heating required from Solar Thermal, ASHP, Geothermal, etc

#### MONTHLY ENERGY PROFILE

| Month | Energy Load<br>(MJ) | Internal Gains<br>(MJ) | Solar Gains<br>(MJ) | Aux. Energy |
|-------|---------------------|------------------------|---------------------|-------------|
| Jan   | 8128.1              | 1792.1                 | 1346.9              | 4989.1      |
| Feb   | 6522.3              | 1613.0                 | 3168.8              | 1740.5      |
| Mar   | 6364.0              | 1783.8                 | 2086.6              | 2493.6      |
| Apr   | 4529.5              | 1728.2                 | 2263.3              | 537.9       |
| Мау   | 3243.3              | 1770.0                 | 1471.4              | 1.9         |
| Jun   | 1634.5              | 1254.6                 | 379.8               | 0.0         |
| Jul   | 1301.1              | 1108.5                 | 192.6               | 0.0         |
| Aug   | 1478.7              | 1203.2                 | 275.4               | 9.0         |
| Sep   | 2317.3              | 1436.2                 | 881.1               | 0.0         |
| Oct   | 4717.3              | 1814.2                 | 1200.0              | 1703.1      |
| Nov   | 6492.6              | 1750.0                 | 793.5               | 3949.2      |
| Dec   | 7932.5              | 1800.2                 | 1519.6              | 4612.7      |
| Ann   | 54661.3             | 19054.2                | 15579.1             | 20028.0     |
| one   |                     |                        |                     | $\smile$    |

### Solar Domestic Hot Water

- A small simple system can provide 65% of domestic hot water needs
- Good use of limited roof space. Higher energy yield per sq. meter than PV
- Direct energy collection no reliance on grid storage
- Somewhat less expensive than PV

![](_page_53_Picture_5.jpeg)

- More complicated than PV
- Pipes and pumps are more complicated and need more maintenance than wires.

![](_page_53_Picture_8.jpeg)

#### Is Solar Thermal Heating really practical in Alaska?

There seems to be so little solar energy available when it is needed the most. It would take 161000 litres (42,000 US gal.) of water with a 20°C (36°F)  $\Delta$ T to store the November to late January short fall; 13,900mJ (13 milBTU)

#### MONTHLY ENERGY PROFILE

Anchorage

| Month | Energy Load<br>(MJ) | Internal Gains<br>(MJ) | Solar Gains<br>(MJ) | Aux. Energy<br>(MJ) |
|-------|---------------------|------------------------|---------------------|---------------------|
| Jan   | 8128.1              | 1792.1                 | 1346.9              | 4989.1              |
| Feb   | 6522.3              | 1613.0                 | 3168.8              | 1740.5              |
| Mar   | 6364.0              | 1783.8                 | 2086.6              | 2493.6              |
| Apr   | 4529.5              | 1728.2                 | 2263.3              | 537.9               |
| Мау   | 3243.3              | 1770.0                 | 1471.4              | 1.9                 |
| Jun   | 1634.5              | 1254.6                 | 379.8               | 0.0                 |
| Jul   | 1301.1              | 1108.5                 | 192.6               | 0.0                 |
| Aug   | 1478.7              | 1203.2                 | 275.4               | 0.0                 |
| Sep   | 2317.3              | 1436.2                 | 881.1               | 0.0                 |
| Oct   | 4717.3              | 1814.2                 | 1200.0              | 1703.1              |
| Nov   | 6492.6              | 1750.0                 | 793.5               | 3949.2              |
| Dec   | 7932.5              | 1800.2                 | 1519.6              | 4612.7              |
| Ann   | 54661.3             | 19054.2                | 15579.1             | 20028.0             |
| )one  |                     |                        |                     |                     |

### Solar Thermal Space Heating

- Not enough energy there when you need it most
- Can be very complicated
- Potential to harvest more useful energy per sq. ft than PV (~20 kWh/sq.ft./year)
- Incremental cost at Riverdale~ \$50000 per unit
- 21,000 litre storage tank insulated to R50 loses 1.5°F per day.

![](_page_55_Picture_6.jpeg)

![](_page_55_Picture_7.jpeg)

![](_page_55_Figure_8.jpeg)

#### **Riverdale NZ Heating Schematic**

![](_page_55_Picture_10.jpeg)

### Air Source Heat Pumps for Domestic Hot Water

- Relatively low cost \$1500-2000
- Provide a small summer cooling benefit
- Work well in tandem with Air Source Heat Pump or Geothermal heating.
- Will shrink the size of the PV array
- Annual COP of ~1.50 to 1.75 is possible
- Provides a small amount of summer cooling

- Will increase winter heating load
- Noisy

![](_page_56_Figure_9.jpeg)

### Air Source Heat Pump operating range

- The energy harvested by Air Source Heat Pumps is 100% renewable - solar energy with no direct sun.
- It is possible to get C.O.P's\* of 2 or better in Anchorage.
- C.O.P. drops off as temperature get colder.
- Mitsubishi 'Hyperheat' units have shown C.O.P's of greater than 1.0 at temperatures as low as -25°F.
- They can make or break net zero energy.

![](_page_57_Figure_6.jpeg)

\*C.O.P. - Coefficient of Performance C.O.P. of 2 indicates 2 units of energy out for every 1 unit of electricity in.

Edmonton Heating Degree Days 2013

![](_page_58_Figure_0.jpeg)

#### Daily High and Low Temperature

![](_page_58_Figure_2.jpeg)

The daily average low (blue) and high (red) temperature with percentile bands (inner band from 25th to 75th percentile, outer band from 10th to 90th percentile).

Seattle

#### Anchorage

![](_page_59_Figure_0.jpeg)

![](_page_59_Figure_1.jpeg)

![](_page_59_Figure_2.jpeg)

Anchorage

![](_page_60_Figure_0.jpeg)

### Mini splits vs Central systems

- Mini splits can save heating system dollars if the loads are small enough to be met with point source heating and electric baseboard back up.
- Big central ASHP's like the Mitsubishi Zuba Central will add ~\$8000 to heating system costs.
- Even at that price central systems can pay for themselves in offset PV costs. If it saves 3000kWh/year if will offset \$12,000 worth of PV and also reduce roof space.

![](_page_61_Picture_4.jpeg)

### Hunt for the NZ Sweet Spot

|                     | ERS 82                                              |                                                                         | <b>Passive House</b>                                                             |
|---------------------|-----------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                     | I                                                   | Envelope Specification                                                  | IS                                                                               |
| Foundation          | R25- 2" EPS +R20 frost<br>wall                      | R37- 4"EPS + R22 Frost<br>wall                                          | R52- 6" EPS + R28 Frost<br>wall                                                  |
| underlab insulation | R9- 2" Type 2 EPS                                   | R18- 4" Type 2 EPS                                                      | R27                                                                              |
| Walls               | R 24 - 2x8, 24"O.C. R28<br>Batt                     | R40- 12" Double 2x4 ,<br>24" OC                                         | R67- 16" Double 2x4with<br>2x4 wiring chase,<br>Cellulose plus R14 roxul         |
| Ceiling             | R60- cellulose                                      | R80 - cellulose                                                         | R100- cellulose                                                                  |
| Windows             | Duxton fbreglass wih<br>R5.33/R8.33 COG             | Duxton fbreglass wih<br>R5.33/R8.33 COG                                 | ~R 10 COG Passive House<br>windows                                               |
| Air tighness        | 1.5 ACH -Caulked poly<br>with Habitat details       | .5 ACH - Caulked Poly<br>with Siga tape and extra<br>care and attention | .03 ACH- Taped OSB,<br>even more care and<br>attention, Passive house<br>windows |
|                     |                                                     | <b>Mechanical Systems</b>                                               |                                                                                  |
| Heating system      | Large central air source<br>heat pump- Zuba Central | Ducted mini split air<br>source heat pump-<br>Mitsuhishi SF7            | Electric baseboards                                                              |
| HRV                 | VanEE 2000HE                                        | Air Pohoda Ultima 240E                                                  | Air Pohoda Ultima 240E                                                           |
| Hot Water           | Air source DHW                                      | Air source DHW                                                          | Air source DHW                                                                   |

| Lowest Cost Net Zero with EGH 82 Envelope*                                                                                                        |              |           |             |          |       |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-------------|----------|-------|--|--|
|                                                                                                                                                   |              |           |             |          |       |  |  |
| Air Source HP with Air                                                                                                                            | Space Heat*  | Cooling*  | DHW         | L.A.M.E. | Total |  |  |
| Source DHW                                                                                                                                        | 9100         | 1000      | 4550        | 5840     | 20490 |  |  |
| С.О.Р.                                                                                                                                            | 2.0          | 4.1       | 1.6         | 1.0      |       |  |  |
| Remaining Electrical Load                                                                                                                         | 4550         | 243       | 2844        | 5840     | 13477 |  |  |
|                                                                                                                                                   |              |           |             |          |       |  |  |
| Installed PV watts                                                                                                                                | 13477        | Shading A | djustment % | 1        | 13477 |  |  |
| Panel Size - 18 sq ft , 250 Watts                                                                                                                 |              | Modul     | es needed   | 54       |       |  |  |
|                                                                                                                                                   |              |           |             |          |       |  |  |
| PV Area Available                                                                                                                                 | 900 Sq feet. | PV Are    | a Needed    | 970      | Sqft. |  |  |
|                                                                                                                                                   |              |           |             |          |       |  |  |
| Envelope upgrade cost**                                                                                                                           | \$0          |           |             |          |       |  |  |
| Zuba Central cost**                                                                                                                               | \$8,000      |           |             |          |       |  |  |
| $\Lambda$ : $\mu$ and $\nu$ $\mu$ $\mu$ $\mu$ $\lambda$ | ć o          |           |             |          |       |  |  |

|                             | · · /    |   |   |
|-----------------------------|----------|---|---|
| Air source DHW cost**       | \$0      |   |   |
| Ducted Mini Split cost**    | N/A      |   |   |
| PV Cost                     | \$43,800 |   |   |
|                             |          |   |   |
| Total Net Zero Upgrade Cost | \$51,800 |   |   |
|                             |          | - | - |

\* Annual Heating and Cooling from HOT2000

\*\* Costs in relation EGH 82 envelope with gas furnace and DHW

#### Lowest Cost Net Zero with EGH 86 Envelope

| Air Source HP with Air             | Space Heat*  | Cooling*             | DHW    | L.A.M.E. | Total |
|------------------------------------|--------------|----------------------|--------|----------|-------|
| Source DHW                         | 4200.0       | 1400.0               | 4200.0 | 5840.0   | 15640 |
| С.О.Р.                             | 2            | 4                    | 2      | 1        |       |
| Remaining Electrical Load          | 2100         | 341                  | 2625   | 5840     | 10906 |
|                                    |              |                      |        |          |       |
| Installed PV watts with no shading | 10906        | Shading Adjustment % |        | 1        | 10906 |
| Panel Size - 18 sq ft , 250 Watts  |              | Modules needed       |        | 44       |       |
|                                    |              |                      |        |          |       |
| PV Area Available                  | 900 Sq feet. | PV Area Needed       |        | 785      | Sqft. |
|                                    |              |                      |        |          |       |
| Envelope upgrade cost**            | \$18,000     |                      |        |          |       |
| Zuba Central cost**                | N/A          |                      |        |          |       |
| Air source DHW cost**              | \$0          |                      |        |          |       |
| Ducted Mini Split cost**           | -\$2,000     |                      |        |          |       |
| PV Cost                            | \$35,443     |                      |        |          |       |
|                                    |              |                      |        |          |       |
| Total Net Zero Upgrade Cost        | \$51,443     |                      |        |          |       |

- \* Annual Heating and Cooling from HOT2000
- \*\* Costs in relation EGH 82 envelope with gas furnace and DHW

#### Lowest Cost Net Zero with ~ Passive House Envelope\*

| Baseboard Heaters with Air         | Space Heat   | Cooling*             | DHW  | L.A.M.E. | Total |
|------------------------------------|--------------|----------------------|------|----------|-------|
| Source DHW                         | 2100         | 1600                 | 4200 | 5840     | 13740 |
| C.O.P.                             | 1.0          | 1.0                  | 1.6  | 1.0      |       |
| Remaining Electrical Load          | 2100         | 1600                 | 2625 | 5840     | 12165 |
|                                    |              |                      |      |          |       |
| Installed PV watts with no shading | 12165        | Shading Adjustment % |      | 1        | 12165 |
| Panel Size - 18 sq ft , 250 Watts  |              | Modules needed       |      | 49       |       |
|                                    |              |                      |      |          |       |
| PV Area Available                  | 900 Sq feet. | PV Area Needed       |      | 876      | Sqft. |
|                                    |              |                      |      |          |       |
| Envelope upgrade cost**            | \$45,000     |                      |      |          |       |
| Zuba Central cost**                | N/A          |                      |      |          |       |
| Air source DHW cost**              | N/A          |                      |      |          |       |
| Savings re electric baseboard **   | -\$8,000     |                      |      |          |       |
| PV Cost                            | \$39,536     |                      |      |          |       |
|                                    |              |                      |      |          |       |
| Total Net Zero Upgrade Cost        | \$76,536     |                      |      |          |       |
|                                    |              |                      |      |          |       |

- \* Annual Heating and Cooling from HOT2000
- \*\* Costs in relation EGH 82 envelope with gas furnace and DHW

|                     | ERS 82                                              | ERS 88                                                                  | <b>Passive House</b>                                                             |
|---------------------|-----------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                     |                                                     | Envelope Specification                                                  | IS                                                                               |
| Foundation          | R25- 2" EPS +R20 frost<br>wall                      | R37- 4"EPS + R22 Frost<br>wall                                          | R52- 6" EPS + R28 Frost<br>wall                                                  |
| underlab insulation | R9- 2" Type 2 EP5                                   | R18- 4" Type 2 EPS                                                      | R27                                                                              |
| Walls               | R 24 - 2x8, 24"O.C. R28<br>Batt                     | R40- 12" Double 2x4 ,<br>24" OC                                         | R67- 16" Double 2x4with<br>2x4 wiring chase,<br>Cellulose plus R14 roxul         |
| Ceiling             | R60- cellulose                                      | R80 - cellulose                                                         | R100- cellulose                                                                  |
| Windows             | Duxton fbreglass wih<br>R5.33/R8.33 COG             | Duxton fbreglass wih<br>R5.33/R8.33 COG                                 | ~R 10 COG Passive House windows                                                  |
| Air tighness        | 1.5 ACH -Caulkec poly with Habitat details          | .5 ACH - Caulked Poly<br>with Siga tape and extra<br>care and attention | .03 ACH- Taped OSB,<br>even more care and<br>attention, Passive house<br>windows |
|                     |                                                     | Mechanical Systems                                                      |                                                                                  |
| Heating system      | Large central air source<br>heat pump- Zuba Central | Ducted mini split air<br>source heat pump-<br>Mitsubishi SEZ            | Electric baseboards                                                              |
| HRV                 | VanEE 2000HE                                        | Air Pohoda Ultima 240E                                                  | Air Pohoda Ultima 240E                                                           |
| Hot Water           | Air source DHW                                      | Air source DHW                                                          | Air source DHW                                                                   |

| Rough Cost of Net Zero in Fairbanks                                                                                                                                                                |                                      |                       |                         |                  |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------|-------------------------|------------------|----------------|
| Air Source HP with Air Source DHW                                                                                                                                                                  | Space Heat<br>10315                  | t Cooling<br>0        | DHW<br>2500             | L.A.M.E.<br>6400 | Total<br>19215 |
| С.О.Р.                                                                                                                                                                                             | 1.5                                  | 4.1                   | 1.5                     | 1.0              |                |
| Remaining Electrical Load                                                                                                                                                                          | 6877                                 | 0                     | 1667                    | 6400             | 14943          |
| PV yield per installed Peak Watt                                                                                                                                                                   | 0.912                                |                       |                         |                  |                |
| Installed PV watts with no shading<br>Panel Size - 18 sq ft, 250 Watts                                                                                                                             | 16385                                | Shading Ac<br>Modules | ljustment %<br>s needed | 100%<br>66       | 16385          |
| PV Area Available                                                                                                                                                                                  | 900 Sq<br>feet.                      | PV Area               | Needed                  | 1180             | Sqft.          |
| Envelope upgrade cost<br>Zuba Central incremental cost<br>Air source DHW incremental cost<br>Ducted Mini Split incremental cost<br>PV Cost at \$3.25 installed watt<br>Total Net Zero Upgrade Cost | \$?<br>\$?<br>\$?<br>\$53,252<br>\$? |                       |                         |                  |                |
|                                                                                                                                                                                                    |                                      |                       |                         |                  |                |

| Rough Cost of Net Zero in Anchorage                                                                                                                                 |                                      |                  |                              |                  |                |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------|------------------------------|------------------|----------------|--|
| Air Source HP with Air Source DHW                                                                                                                                   | Space Heat<br>6117                   | Cooling<br>0     | DHW<br>2300                  | L.A.M.E.<br>6400 | Total<br>14817 |  |
| C.O.P.                                                                                                                                                              | 2.2                                  | 4.1              | 1.7                          | 1.0              |                |  |
| Remaining Electrical Load                                                                                                                                           | 2780                                 | 0                | 1533                         | 6400             | 10574          |  |
| PV yield per installed Peak Watt                                                                                                                                    | 0.785                                |                  |                              |                  |                |  |
| Installed PV watts with no shading<br>Panel Size - 18 sq ft,250 Watts                                                                                               | 13471                                | Shading<br>Modul | Adjustment<br>%<br>es needed | 100%<br>54       | 13471          |  |
| PV Area Available                                                                                                                                                   | 900 Sq feet.                         | PV Are           | a Needed                     | 970              | Sqft.          |  |
| Envelope upgrade cost<br>Zuba Central incremental cost<br>Air source DHW incremental cost<br>Ducted Mini Split incremental cost<br>PV Cost at \$3.25 installed watt | \$?<br>\$?<br>\$?<br>\$?<br>\$44,356 |                  |                              |                  |                |  |
| Total Net Zero Upgrade Cost                                                                                                                                         | \$?                                  |                  |                              |                  |                |  |

### Conclusions and Questions

- Net Zero energy in Alaska is a tough challenge
- Air source heat pumps look to be a key ingredient
- Air source heat pumps change the economics of energy conservation.
- Net Zero Energy Sweet Spot a near Passive House envelope with an cold climate mini split.

For more info on how to do practical net zero energy design and construction consider taking Marc Rosenbaum's on line course at <u>http://nesea.cammpus.com/</u> <u>courses/zero-net-energy-homes--online</u>

![](_page_69_Picture_6.jpeg)

![](_page_70_Picture_0.jpeg)

![](_page_70_Picture_1.jpeg)

habitat-studio.com