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I.  INTRODUCTION 

A.  The “kT Problem” 

 
The biological effects of weak extremely-low frequency (ELF) magnetic fields (MFs) have long 

been a subject of controversy, with many expressing skepticism as to their very existence: ELF-MFs 

have lacked a credible mechanism of interaction between MFs and living material.   

 

A prominent conceptual objection has been the “kT problem” (Binhi, 2007). This “problem” can 

be summarized by the very large ratio between the energy available from a quantum of ELF radiation 

(2.47  ×10−13 eV) and the thresholds for ionization of atoms (4.34 eV for potassium), chemical 

activation (~ 0.7 eV), or even the 0.156 eV able to transfer protons across gA channels (Chernyshev, 

2002).  

 

What these numbers show is that ELF MFs are certainly not able to have effects through these 

particular mechanisms, but a detailed theoretical analysis (Binhi, 2007) does not preclude that ELF-MF 

effects could occur in other ways. MFs can alter the shape of the orbitals of particles without 

substantially altering their energies, possibly leading to very low thresholds for MF biological effects. 

Rather than a pure energy problem, as stated above, the true “problem” is to determine if biological 

structures exist that can be disturbed by very low-amplitude ELF MFs. 

 

 

II.  KEY SCIENTIFIC EVIDENCE 

B.  Magnetic Sensors 

 
Modern electronics provides interesting examples, such as the MOSFET, where tiny signals can 

control large energies: a voltage applied to a gate with nominally zero current allows control of 

substantial drain currents.  Biological systems have their own sources of energy, and the MF need only 

contribute a perturbing influence. 

 

In the context of ELF MF effects, it is useful to examine the transducers of MF-measuring 

instruments. Induction coils have long been the item of choice for many such instruments, but they 

suffer from a lack of analogy with possible biological equivalents, in that they gather signal from 
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substantial surfaces (the coil core), and then concentrate the action of the magnetic flux variations 

gathered over that considerable area at a single point, the contact of the winding. 

Hall-effect probes are closer to the mark, in that they detect the potential difference created by a 

MF on a current flowing in a semi-conductor. Here, the MF acts to deflect a current flow that is 

powered by an extraneous source. This device dissociates the energy available from the MF itself from 

the energy it controls. 

Another electronic device even closer to the biological transducer we seek is the Spin Tunnel 

Junction (Micromagnetics, 2012). Such a junction is made of two ferromagnetic metal layers separated 

by an insulating barrier of a few nanometers (Fig. 6). If a small voltage is applied across the junction, 

electrons will tunnel through the barrier, according to the ambient MF. The device’s MF sensitivity is 

based on spin-coherent tunneling: the probability of an electron tunneling across the barrier is 

dependent on its spin, because an electron of a given spin must tunnel to an unfilled state of the same 

spin. Even the simplest free-electron descriptions of Spin Polarization and Tunneling 

MagnetoResistance confirm that junction characteristics  are  determined  not  only  by  the  

ferromagnetic layers, but  depend as well on the properties of the barrier (Tsymbal, 2003). Solid-state 

Spin Tunnel Junctions can detect MFs as low as 0.26 nT at 60-Hz.  What these solid-state devices 

demonstrate is that very small MFs can have effects within the bulk of materials, and that changes in 

the properties of insulating materials can affect electron tunneling. 

 

C.  Magnetic Fields and Incubators  

 
MF experiments with living cells are immediately faced with a practical problem. Cell culture 

incubators have within them relatively large MFs, due to their relatively weak attenuation of 

environmental MFs, and to the necessity of implementing controlled heating, humidity and CO2 

concentration conditions. The first control simulates body temperature, the second avoids osmotic 

imbalance through evaporation, and the third stabilizes pH values within cell culture media. Table 1 

was compiled in a survey of 46 incubators used in research (Su, 2012), and showed that average MFs in 

water-jacketed CO2 incubators range from 0.9 to 13 µT. 

The reaction of many investigators to this situation has been to compensate for the high 

backgrounds by using even larger MFs in their experiments. According to the conventional dose-

responses expected in Toxicology, the effect of an agent can be detected even in the presence of a 

background exposure, since the biological response is expected to rise smoothly with dose. Many 
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investigators must also have felt that more robust data would be obtained using larger exposures, and 

that background MFs in incubators could be tolerated. 

 
 Table 1. Summary MF Table of 46 Surveyed Incubators (in μT). 

 

Brand Model Type Mean Min Max 
Max 

Background 

New Brunswick G-25 Shaker 0.39 0.2 0.81 2.06* 

Chicago Surgical Ele.  N.A. General 0.61 0.25 1.21 3.32* 

Forma Scientific 3956 General 0.76 0.2 2.64 0.22 

Fisher Sci. Isotemp General 0.76 0.05 1.85 0.32 

Fisher Sci. 637D General 0.84 0.22 2.49 0.23 

Forma Scientific 3157 CO2 W 0.91 0.11 2.66 1.77* 

Thermo Electron N.A. Shaker 0.98 0.57 1.58 5.86* 

Nuaire US auto flow CO2 W 0.99 0.4 2.28 1.34* 

Thermo Forma 3310 CO2 W 1.04 0.32 3.75 0.68* 

Innova New Brunswick 4200 Shaker 1.17 0.31 2.97 0.4 

Fisher Isotemp 281 General 1.86 1.2 2.22 0.47 

Baxter WJ501 CO2 W 1.87 0.77 5.27 1.6* 

Sanyo N.A. CO2 2.77 0.85 6.72 0.3 

New Brunswick G-25 Shaker 2.79 0.42 16.13 0.31 

Sanyo O2/ CO2 MCO-18M CO2 2.8 1.48 4.14 0.81* 

Sanyo MCO_19AIC CO2 2.94 1.63 5.17 3.31* 

Sanyo MCO-20AIC CO2 3.12 1.22 6.64 6.68* 

Hera Cell 240 CO2 3.28 2.36 4.62 1.48* 

Baxter Tempcon General 3.36 0.61 7.43 1* 

Innova New Brunswick 4000 Shaker 3.47 1.27 9.53 0.36 

Hera Cell N.A. CO2 3.65 2.68 4.49 0.26* 

Thermo Scientific 370 CO2 3.84 1.9 7.01 0.64* 

New Brunswick C25 Shaker 3.88 0.33 17.74 0.96* 

Thermo Electron 3110 CO2 W 3.91 1.19 8.56 0.92* 

Nuaire Nu4750 CO2 W 3.95 0.77 10.38 0.64* 

Thermo Scientific 370 CO2 3.99 2.03 6.25 0.96* 

Forma Scientific 3130 CO2 W 4.67 1.53 11.14 1.37* 

Forma Scientific 3110 CO2 W 5.44 1.77 12.59 2.42* 

Fisher Sci. 546 CO2 W 6.58 2.36 16.88 0.38 

Forma Scientific N.A.(Old) CO2 6.71 2.32 16.83 1.36* 

Thermo Electron 3130 CO2 W 6.79 1.73 16.97 18.9*** 

Thermo Electron 3110 CO2 7.55 1.83 18.28 3.92* 

Revco N.A.(Old) CO2 7.67 3.57 17.76 1.27* 

Napco 3550 CO2 7.8 3.52 13.42 2.84* 

Thermo Electron Napco 3550 CO2 7.83 3.81 12.13 1.63* 

Fisher Sci. Isotemp 546 CO2 W 9.61 2.34 37.58 0.76* 

Thermo Forma 3110 CO2 W 9.73 2.73 24.14 0.47* 

N.A. N.A. General 10.46 3.57 19.51 0.2 
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Thermo Forma 3110 CO2 W 11.89 3.3 30.41 0.49* 

Gallenkamp N.A. General 11.96 3.06 37.17 2.3* 

Fisher Sci. 610 CO2 12.3 5.15 35.52 1.59* 

Forma Scientific 3158 CO2 W 13.08 2.62 50.64 1.61* 

Labline 3527 Shaker 14.04 3.62 42.74 11.87** 

WWR international 2005 General 15.48 4.92 47.37 1.28 

Forma Scientific 546 CO2 16.5 2.61 74.47 3.45* 

Sanyo MIR152 CO2 26.98 5.67 120 0.34* 

Type “CO2 W” means CO2 incubator with water jacket. “Max Background” refers to measurements outside the incubators. * 

measured at 50 cm or halfway between the incubator and other electric equipment. ** 5 cm to another incubator. *** 10 cm 

to a power outlet panel. For more details, refer to Dong and Héroux, 2012. 

 

 

D.  Magnetic Shielding 

 
If it is desired to eliminate the background MFs of incubators to low levels, shielding must be 

implemented within the incubators. We achieved this in our own experiments using structural steel 

cylinders 6.3 mm in thickness. As shown in Fig. 1, culture vessels are centered in concentric 

rectangular structural steel pipes 5.1 x 7.6 x 20 cm, 7.6 x 10.2 x 20  cm and 15.2 x 24.5 x 36 cm. This 

configuration reduces 60-Hz MFs by a factor of 144, providing “unexposed” cells with a MF 

environment of 3 nT, slightly below the measurement floor (5 nT at 60-Hz) of our Narda EFA-300 MF 

instrument (Li, 2012a). The shielding weighs about 20 kg, and is subject to corrosion, if used in the 

incubator for long periods of time. Fig. 2 shows the change along the axis of the shielding in the 

triaxially integrated MF. Static MFs within the shields are slightly lower than 50 µT, as structural steel 

is de-magnetized during production, but of random direction. 

 

 
 

 

 

 

Fig. 1. The three layers of magnetic shielding. The Narda EFA-

300’s MF probe is in place of the culture vessel. MF coils for 

exposure are below, but not in contact with the two smaller 

shields, insulated from the outer shield by a layer of rigid foam. 
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Fig. 2. MF density (µT) generated by an exposure coil vs longitudinal distance inside a magnetic shield 

pair. The two red lines show the extent of T-25 and T-12 culture vessels, and the yellow rectangle is the 

smaller shield outline. 

 

 

 

E.  Experiments on Cells  

 
We conducted experiments on 5 cancer cell lines, with the objective of bringing high precision 

to our in vitro determinations. This objective was reached using automated data acquisition and real-

time computer vision, which allowed automated recognition of cells, apobodies and decay particles in 

cell cultures (Héroux, 2004). In order to reduce deviations related to changing cell culture media, our 

work used a single synthetic medium (rather than Fetal Bovine Serum) for all 5 cancer models 

investigated (Li, 2012b). 

We first focused our work on changes in the behavior of our cell models under various levels of 

oxygen. Somewhat surprisingly, all 5 models survived even under anoxic (0 % oxygen) conditions, 

confirming the exceptional flexibility of cancers cells, able to thrive under anoxia, presumably by 

finding glycolysis-based sources of cellular energy even in the absence of oxygen. 

Low oxygen conditions are actually quite representative of the normal environment of many cells in the 

body, and are certainly a better in vitro representation of the environment of tumor cells, which grow in  

oxygen  and  nutrient-restricted environments.   

Withdrawal of oxygen suppresses metabolism, as a major combustible of mitochondrial ATP 

synthesis, oxygen, is eliminated. Metabolism can also be suppressed by a number of chemicals such as 

oligomycin, imatinib and melatonin-vitamin C, which we collectively designated as “metabolic 

restrictors”. 

 

 

 

F.  Karyotype Contraction 

     

When grown under anoxia (as opposed to atmoxia which is 21 % oxygen, and the commonly 

used cell culture condition) our 5 cancer cell models lost 6 to 8 chromosomes from their normal 
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number (Table 3). Further, in  the  presence  of strong doses of antioxidant  metabolic  restrictors,  the  

cell  lines  quickly reverted to almost normal chromosome numbers (47 – 49). The anoxic cells showed 

increases in proliferation rate, and the acquisition of a stable, stem phenotype.  

Using our 5 hyperploid (54 – 69 chromosomes) cancer cell models, we found that our cells 

adjusted their chromosome numbers up or down, to match their micro-environment, through rapid 

mechanisms of  endo-reduplication (unscheduled, extra-mitotic chromosome duplication) or  

chromosome  loss. We called this reversible loss of chromosomes under suppressed metabolism 

“Karyotype Contraction” (KC).  

Anoxic K562 displays a very stable karyotype, with 75 % of the cells having either 61 or 62 

chromosomes. With the knowledge that metabolic changes would change these chromosome counts, 

we then set out to investigate the effects of ELF MFs on this model, while we carefully controlled MFs 

using the shielding techniques described above. We were then using KC as a metabolic scale. 

Starting from cell cultures maintained in a pre-industrial environment (less than 4 nT 60-Hz 

MF), our 5 cancer cell lines were exposed to constant ELF-MFs within the range of 0.025 to 5 µT, and 

the cells were examined for karyotype changes after 6 days.  

As shown in Table 2, all cancer cells lines lost chromosomes from MF exposures, with a mostly flat 

dose-response. It seemed that the number of chromosomes lost was more specifically connected to the 

particular cell type than to the MF level, although the two erythro-leukemia cell types both showed a 

dose-response between 25 and 400 nT. 

Surprisingly, constant MF exposures for three weeks allowed a rising return to the baseline, 

unperturbed karyotypes. From this point, small MF increases or decreases (10 %) were then again 

capable of inducing karyotype contractions (Li, 2012a).  

 

 

 

 

 

Table 2. Karyotype Contraction (mean number of chromosomes lost over 6 days) 

 

Magnetic Field 

(nT) 

Anoxic  

K562 

Erythroleukemia 

Atmoxic  

HEL 

Erythroleukemia 

Atmoxic  

NCI-H460 

Lung cancer 

Anoxic  

MCF-7 

Breast cancer 

Atmoxic 

COLO-320DM 

Colon cancer 

25 2.21         

50 4.92 10.22 7.52 11 5.36 

100 8.18 11.55       

200 11.04         
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400 10.4 12.79 7.55 10.64 5.85 

700 9.52         

1000 7.69     10.68   

1500 9.94         

5000 12.1 13.03 7.46 10.95 5.78 

 
 

 

 

Table 3. Karyotype Contraction (mean number of chromosomes lost over 6 days) 

 

Cell 

Atmoxic Modal 

Chromosome 

Number 

Anoxic KC 
Anoxic to MF 

Saturation KC 
Atmoxic to MF 

Saturation KC 

Atmoxic to 

Anti-Oxidant 

Suppression 

KC* 

K-562 

Erythroleukemia 
69 7 10.12  21.34 

HEL 

Erythroleukemia 
66 7  12.91 18 

MCF-7 

Breast cancer 
82 8 10.82  18 

NCI-H460 

Lung cancer 
57 6  7.51 10 

COLO-320DM 

Colon cancer 
54 6  5.66 7.7 

Average 65.6 6.8 10.47 8.69 15.01 

Condition + O2 - O2 - O2   + MFs O2    + MFs 

O2    +  

Oxidative 

Inhibition 

 

The conclusion from these observations was that MFs act as a metabolic inhibitor, even at very low 

levels commonly encountered in the normal environment. 

 

G.  ATP Synthase 

 
Supplementary tests carried out by comparing MF-exposed cell cultures to cultures exposed to 

various metabolic suppressors showed that the MF-exposed cultures were remarkably similar to those 

exposed to oligomycin A, a specific inhibitor of the Fo segment of the enzyme ATP Synthase (ATPS). 

But how could MFs as low as 25 nT alter the activity of ATPS? ATPS has the structure of a 

motor-generator than normally produces ATP using the energy of a flow of protons through a turbine-

like structure, Fo. MFs apparently impaired the flow of protons through ATPS Fo. 
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Fig. 3. The structure of ATPS Fo: entry and exit channels for the movement of protons (Yoshida, Tokyo 

Institute of Technology). 

 

Russian physicists (Semikhina 1981; Semikhina 1988)  have reported that very low levels of 

ELF MFs (25 nT) can alter the structure of water, and that the effects of the altered water structure 

would be particularly important under high concentrations of protons and water molecules. An 

interesting aspect of these changes in water structure is that the transition between states takes several 

hours.  

As it turns out, the entry and exit channels of ATPS Fo (Fig. 3) are hydrophilic channels, which 

means that they are expected to be filled with water molecules, and the intermembrane potential of 

mitochondria maintains a large electric field (180 kV/cm) which concentrates protons within them. 

These locations seem ideal to embody the low level effects documented by Semikhina and Kiselev. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The many regulatory pathways of 

AMPK, with the hypoxic (1), metformin (2) 

and ATPS suppression sites (3) labeled 

(http://www.cellsignal.com/). 

 

 

H.  AMPK 

 

If the mechanism was indeed as we thought, then MFs would alter the production of ATP in cells. If 

this happened, another important intracellular enzyme, AMP-activated protein kinase (AMPK), would 

http://www.cellsignal.com/
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immediately be activated, as AMPK is extremely sensitive to changes in the level of ATP. We tested 

this hypothesis by two supplementary assays involving metformin and resistin. As expected, MF effects 

were amplified by metformin, an AMPK stimulator, and attenuated by resistin, an AMPK inhibitor (Li, 

2012a). 

 

Our data therefore suggests that the karyotype contractions caused by MFs stem from 

interference with mitochondria’s ATP synthase (ATPS), compensated by the action of AMPK. The 

involvement of AMPK also conveniently explains the slow restoration of karyotypes to their original 

level after 3 weeks, as AMPK is not only fast-acting to restore ATP levels, but slow-acting through its 

numerous metabolic and genetic regulation pathways (Fig. 4). It may also explain the unusual 

observation where increases or decreases in MF exposures can both produce KCs (Li, 2012a). 

 

I.  In the Channels 

 

Some enzymes operate faster than predicted by classical thermodynamics, and their increased speed 

can be explained by tunneling of protons or electrons through activation barriers (Garcia-Viloca, 2004; 

Olsson, 2004). Quantum tunneling for protons over 6 nm through bridging by water molecules has 

been observed in tryptamine oxidation by aromatic amine dehydrogenase, for example, and tunneling 

in enzymatic reactions is now widely accepted in biological models (Masgrau, 2006). 

It is of interest to examine how protons may flow through ATPS Fo channels. The protons 

trickle through a thin pipe of water molecules, propelled by an electric field of about 180 kV/cm. 

Adiabatic tunneling should be more efficient than non-adiabatic coupling, implying that disturbances 

along the channel could result in loss of channel transparency. Proton-coupled electron transfer 

underpins many biological reactions, and may occur as unidirectional or 

bidirectional, and synchronous or asynchronous, transfer of protons and 

electrons (Reece, 2009).  

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Tryptamine
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Fig. 5.     The ATPS Fo proton hydrophilic channel. Hydrophilic side chains and residues are in green 

and blue. (from Sasada R, Marcey D. ATP Synthase, 2010. 
http://www.callutheran.edu/BioDev/omm/jmolxx/atp_synthase/atp_synthase.html#fig1). 

 

 

It is probable that both electrons and protons tunnel through the channel, making theoretical 

analysis more complex, especially as electrons meet with different protons along a chain. Since protons 

are much heavier than electrons (x1836), their wavelength is 43 times shorter (inverse square root), and 

electrons may transfer over longer distances (Moser, 1992; Gray, 1996). Thus, electron transfer can 

span fractions of nano-meters, while proton transfer occurs mostly within a hydrogen bond (less than 

0.197 nm). The hydrogen bond strength (23.3 kJ/mol) is just 5 times the average thermal fluctuation 

energy. Quantum chemical calculations show that this strength can vary as much as 90 %, depending 

on the level of cooperativity or anti-cooperativity within water molecule chains, which corresponds to a 

bond length change of 9 %, or 0.018 nm (Hus, 2012). 

 

This limited reach of proton tunneling and its delicate dependence on water cluster structure 

may be  major factors underlying the sensitivity of ATPS performance to MF-exposed water. 

 

J.  Water ‘Remanence’  

 

From our observations, particularly the fact that exposed cell culture medium can retain 

memory of past MF exposures (Li, 2012a), it does not appear that biological effects of MFs, as we 

detected them, are based on a direct interaction with electrons or protons, but rather, as suggested by 

Semikhina and Kiselev, on an interaction between MF and the structure of water, which in turn 

influences electron and proton tunneling. The exact structure of the water molecule arrays responsible 

is not known, but may be connected with long-lived hydrogen bond structures which confer particular 

proton transparency to ATPS Fo water channels. This structure seems vulnerable to interference by 

MFs over a wide range of intensities and possibly frequencies (Kiselev, 1988). Perturbations to the 

structure of O-H bond vibrations has even been spectroscopically detected as slow (hours) transitions in 

water exposed to sunlight radiation (Yokono, 2009). 

This would not be the first instance of subtle changes in hydrogen bonds resulting in large 

influences in biology. A contemporary example relates to the selective uptake of phosphorus rather than 

arsenic by bacteria. The discrimination by a factor of 4,500 in phosphorus vs arsenic is based on a 4 % 
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distortion in a unique low-barrier hydrogen bond (Elias, 2012). 

 

 

III.  DISCUSSION 

 

There are similarities as well as differences between semi-conductor tunneling and ATPS 

tunneling. Both involve oxygen; tunneling distances, as well as the voltages applied (Fig. 6) are similar. 

But in semiconductor tunneling, only electrons are mobile, while protons move within ATPS. In the 

semiconductor, magnetic sensing is mainly through shifts in the populations of electrons with a given 

spin, determined by the electrodes. In ATPS, the transparency of the water channel seems determined 

by long-term MF exposures. 

 

 Perhaps least understood is how cells can metabolically compensate for various MF exposures 

over time, as shown by the restoration of their chromosome numbers after three week exposures (Li, 

2012a). Anoxia leads to permanent KCs, but other KCs from MFs or other anti-oxidants are transient. 

Most anti-oxidant and MF KCs are larger than the atmoxic to anoxic transition KCs, possibly because 

some oxygen is still available to cell metabolism, even under anoxic conditions. Anoxia and MFs 

together are effective metabolic suppressors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6      Tunneling in magnetic sensors and in ATPS water channels. 
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IV.  CONCLUSIONS 

 

The particularities of hydrogen bond structures in water can justify the subtle changes detected 

in water structure under MF exposures. Under specific circumstances, such water changes may 

influence the flux of protons in ATPS channels, thus inducing some biological effects of MFs. These 

interactions seem to involve very small energies, and also seem to require hours to establish 

themselves, thus bypassing the celebrated “kT problem”. These results may be environmentally 

important, in view of the central roles played in human physiology by ATPS and AMPK, particularly in 

their links to diabetes, cancer and longevity (Li, 2012a).  The wide range of MF amplitudes and 

frequencies that can potentially disturb ATPS make this effect a global health issue. Although society 

seems to compile diseases with more enthusiasm that longevity (Li, 2012a), it should be remembered 

that MF exposures may have both undesirable and desirable effects on health. 
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